

Diplomado Finanzas Cuantitativas con Python

Cuerpo docente

- Doctor en Matemáticas Mauricio Labadie Martínez. Profesor de Asignatura, Facultad de Ciencias, UNAM. Trader e investigador cuantitativo (quant). Ponente Principal del Diplomado
- Maestro en Ciencia de Datos Omar Rodríguez Torres. CTO (Chief Technology Officer)

TEMARIO

MÓDULO I.- Repaso de Programación, Matemáticas y Finanzas.

TEMA	Subtemas	No. de horas	Ponente(s)
I. Introducción a	I.1. Instalación de Python en una PC a través de la distribución Anaconda.	11	Principal: Omar Rodríguez
Python.			Auxiliar: Mauricio Labadie

	I.2. Tipos de variables: double, int, string, array, list, dict, etc.		
	I.3. Condicionales e iteraciones: if-then-else, for, while, iteraciones para listas.		
	I.3. Instalación de las librerías que vamos a usar: numpy, pandas, scipy, matplotlib, etc.		
	II.1. Álgebra Lineal I: espacios vectoriales, matrices, cambios de base, producto punto, valores y vectores propios.		
	II.2. Cálculo III: curvas, diferencial, matriz hessiana, expansión de Taylor, multiplicadores de Lagrange.		
II. Repaso de Matemáticas.	II.3. Probabilidad I: variables aleatorias, distribuciones, histogramas, momentos.		Principal: Mauricio Labadie
	II.4. Probabilidad II: probabilidad condicional, correlación, covarianza, ley de los grandes números, teorema de limite central.	11	Auxiliar: Omar Rodríguez
	II.5. Inferencia Estadística: estimación paramétrica, máxima verosimilitud, pruebas de hipótesis, p-value.		
	II.6. Procesos estocásticos I: movimiento browniano, ecuaciones diferenciales estocásticas, lema de Itô, movimiento browniano geométrico.		
	III.1. Matemáticas Financieras: tasas de interés, valuación de proyectos de inversión.		Principal: Mauricio Labadie
III. Repaso de Finanzas.	III.2. Mercados Financieros y Valuación de Instrumentos: diferentes tipos de mercados (financieros, de dinero, de divisas,	11	Auxiliar: Omar Rodríguez

de capitales), cociente de Sharpe, portafolios de Markowitz, frontera eficiente.

III.3. Métodos Cuantitativos en Finanzas: Capital Asset Pricing Model (CAPM), valor en riesgo (VaR), introducción a instrumentos financieros derivados.

MÓDULO II.- Análisis estadístico en Python

TEMA	Subtemas	No. de horas	Ponente(s)
IV. Visualización de distribuciones en Python.	 IV.1. Simular variables aleatorias en Python. IV.2. Crear histogramas de variables aleatorias. IV.3. Crear un prototipo de análisis de distribuciones. IV.4. Crear un prototipo del Test de Normalidad de Jarque-Bera. 	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
V. Funciones y clases en Python.	 V.1. Principios APIE de la programación Orientada Objeto: abstracción, polimorfismo, herencia, encapsulación. V.2. Filosofía de la refactorización: como evitar repetir código. V.3. Usar funciones y clases en Python para refactorizar los prototipos en unas cuantas líneas de código. 	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
VI. Datos de mercado reales y plots en Python.	VI.1. Descargar series de tiempo de precios de mercado a través de Yahoo Finance.	11	Principal: Mauricio Labadie

	VI.2. Tablas de datos: aprender a usar los dataframes		Auxiliar:
	de la librería pandas.		Omar Rodríguez
	VI.3. Crear plots de las series de tiempos de precios.		
	VI.4. Crear series de tiempo de rendimientos.		
	VI.5. Adaptar los prototipos de distribuciones y de Test de Normalidad a series de tiempo reales.		
			Principal:
			Mauricio Labadie
VII. Examen parcial 1.		11	
			Auxiliar:
			Omar Rodríguez

MÓDULO III. Capital Asset Pricing Model (CAPM).

TEMA	Subtemas	No. de horas	Ponente(s)
	VIII.1. Deducción del CAPM a través de la regresión lineal de un activo con respecto a un mercado dado.		
VIII. Alphas, betas y Capital Asset Pricing Model (CAPM) en Python.	VIII.2. Interpretación geométrica y financiera de los coeficientes de la regresión lineal del CAPM: alpha, beta, epsilon.	11	Principal: Mauricio Labadie
	VIII.3. Analizar la geometría de diferentes estrategias de inversión en el espacio alpha - beta - epsilon.		Auxiliar: Omar Rodríguez
	VIII.4. Crear un prototipo de cálculo del CAPM para un activo dado.		

IX.2. Solución neutral de u Lineal. IX. Algoritmos de optimización y de cobertura de portafolios en Python. IX.4. Propon financieram portafolios. IX.5. Aprend	ender los conceptos de delta- y beta-neutralidad para portafolios de n exacta de cobertura delta y beta un portafolios dado mediante Álgebra er las limitaciones de la solución exacta unto de vista financiero. er una solución no exacta pero nente aceptable para la cobertura de un	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
IX.6. Crear u de inversión	ize.minimize para minimización sin s. un prototipo de cobertura de portafolios		
X. Inversión por factores (Factor Investing) en Python. X.2. Utilizar la un activo o etc. X.3. Crear u	ender el concepto financiero de factores elativos a un activo o portafolios. os factores más comunes para analizar portafolios: growth, value, momentum, n prototipo que, dada una lista de alcule los factores de cualquier activo ee.	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
XI. Examen parcial 2.		11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez

MÓDULO IV. Portafolios de Markowitz y Frontera Eficiente

TEMA	Subtemas	No. de horas	Ponente(s)
XII. Matriz de Varianza- Covarianza en Python.	 XII.1. Calcular y analizar la matriz de varianza-covarianza. XII.2. Demostrar el Teorema de Diagonalización de Matrices Simétricas. XII.3. Interpretar los valores propios máximo y mínimo de la matriz de varianza-covarianza como "portafolios especiales". XII.4. Crear un prototipo de cálculo y análisis de la matriz de varianza-covarianza. 	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
XIII. Análisis de Componentes Principales (PCA) en Python.	 XIII.1. Interpretar la varianza explicada como información que el modelo preserva. XIII.2. Usar el concepto de información para reducir las dimensiones de la matriz de varianza-covarianza. XIII.3. Crear un prototipo del PCA en función del porcentaje mínimo de varianza explicada del modelo. 	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
XIV. Examen parcial 3.		11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
XV. Optimización de portafolios y Asset Allocation en Python.	XV.1. Portafolios de inversiones "clásicos": máxima varianza, mínima varianza, equi-ponderado, ponderado por volatilidad, etc.	11	Principal: Mauricio Labadie

	XV.2. Aprender a usar la librería scipy.optimize.minimize para minimización con restricciones.		Auxiliar: Omar Rodríguez
	XV.3. Crear un prototipo para que, dada una lista de activos y un portafolios clásico deseado, tengamos los pesos o alocación de dicho portafolios.		
XVI. Portafolios de Markowitz y la "Modern Portfolio Theory" en Python.	 XVI.1. Repasar los conceptos de optimización con restricciones y multiplicadores de Lagrange. XVI.2. Interpretar al portafolios de Markowitz como solución a un problema de minimización de varianza con restricciones sobre el rendimiento. XVI.3. Crear un prototipo que, dado un rendimiento esperado, calcule el portafolios de Markowitz correspondiente. 	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
XVII. Frontera Eficiente en Python.	 XVII.1 Entender la geometría de los portafolios de inversiones en el espacio volatilidad-rendimiento. XVII.2. Entender la frontera eficiente como todos los posibles portafolios de Markowitz. XVII.3. Usar la Frontera Eficiente para optimizar o "mejorar" un portafolios dado. XVII.4. Crear un prototipo de visualización de la frontera eficiente y de portafolios concretos. 	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
XVIII. Examen parcial 4.		11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez

MÓDULO V. Monte Carlo y Derivados en Python

TEMA	Subtemas	No. de horas	Ponente(s)
XIX. Simulaciones de Monte Carlo en Python.	 XIX.1. Ley de los grandes números y el teorema de limite central. XIX.2 Intervalos de confianza. XIX.3. Interpretación geométrica de procesos estocásticos usando intervalos de confianza. XIX.4. Definir las simulaciones de Monte Carlo en términos de intervalos de confianza. XIX.5. Crear un prototipo de Monte Carlo que simule trayectorias aleatorias y calcule los intervalos de confianza de la media. 	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
XX. Valuación de opciones en Python.	 XX.1. Deducción de la Formula de Black-Scholes para valuación de opciones europeas. XX.2. Definición de las "griegas" o sensibilidades. XX.3. Utilización de las griegas para la cobertura de un portafolios de opciones. XX.4. Crear un prototipo de valuación de opciones con dos versiones: solución exacta usando la fórmula de Black-Scholes y solución aproximada con intervalos de confianza usando simulaciones de Monte Carlo. 	11	Principal: Mauricio Labadie Auxiliar: Omar Rodríguez
XXI. Examen parcial 5.		11	Principal: Mauricio Labadie

			Auxiliar: Omar Rodríguez
	XXII.1. Definición de productos estructurados.		
XXII. Productos estructurados en Python.	XXII.2. Ejemplo de productos estructurados: opciones barrera, Credit Default Swaps (CDS).		Principal: Mauricio Labadie
	XXII.3. Simulación de productos estructurados dependientes de la trayectoria.	11	Auxiliar: Omar Rodríguez
	XXII.4. Crear dos prototipos: pricing de opción barrera y pricing de CDS.		