OTROS TRABAJOS

¿QUÉ HEMOS DE SABER Y SABER HACER
LOS PROFESORES DE CIENCIAS?
(Intento de síntesis de las aportaciones de la investigación didáctica)

GIL PÉREZ, D.
Departament de Didáctica de les Ciències Experimental. Universitat de València.
Alcalde Reig, 8. 46006 - València.

Versiones previas de este trabajo fueron presentadas en el III Congreso Internacional organizado por Enseñanza de las Ciencias (Santiago de Compostela 1989) y en el I Simposio-Escuela de Educación en la Física (Córdoba, Argentina, 1990).

SUMMARY

This work was aimed at synthesizing the scientific knowledge and skills required as determined by experience on science teaching research.

INTRODUCCIÓN

OTROS TRABAJOS

que, más allá de adquisiciones puntuales, se está traduciendo en la constitución de un cuerpo coherente de conocimientos (Gil et al. 1990). Ello permite ahora intentar una síntesis fundamentada de lo que los profesores y profesoras de ciencias precisamos para impartir una docencia de calidad. El objeto fundamental de este trabajo no es, sin embargo, presentar dicha síntesis, sino favorecer su realización por el propio profesorado. Estamos convencidos, en efecto, de que un trabajo colectivo y de una cierta profundidad del profesorado en torno a esta cuestión puede generar respuestas básicamente coincidentes con lo que la investigación didáctica viene mostrando y susceptibles de integrarse en una visión coherente de la enseñanza/aprendizaje de las ciencias. Tras este planteamiento subyace una concepción de la formación del profesorado (Gil et al. 1990) que puede sintetizarse en las siguientes tesis:

1. Los profesores tenemos ideas, comportamientos, actitudes... sobre la enseñanza/aprendizaje de las ciencias con los que es preciso conectar explícitamente en cualquier actividad de formación.

2. Un buen número de nuestras creencias, comportamientos, etc., sobre la enseñanza de las ciencias revelan una aceptación acrítica de lo que podríamos denominar una docencia «de sentido común», de «lo que siempre se ha hecho», que se convierte así en obstáculo para una renovación de la enseñanza.

3. Sin embargo, si se facilita un trabajo colectivo de una cierta profundidad en torno a problemas de interés, los profesores podemos cuestionar las concepciones y prácticas asumidas acríticamente y construir conocimientos que son coherentes con lo que la literatura específica recoge como fruto de la investigación e innovación didáctica. Nuestra postura es, pues, la voz autocritica (reconocimiento de la insuficiencia, en general, de nuestra formación profesional) y optimista (reconocimiento de la capacidad de los colectivos docentes para elaborar conocimientos que abran nuevas perspectivas). De acuerdo con lo anterior, planteamos este trabajo como una tarea colectiva para equipos de profesores, facilitando el debate de sus propuestas y su confrontación con los resultados de la investigación didáctica. De este modo intentamos romper con las habituales transmisiones verbales a cargo de «especialistas» que relegan a los profesores al papel de simples receptores. Nuestro punto de partida será, pues, el planteamiento de la siguiente cuestión a los equipos de profesores:

¿Qué deberíamos conocer en sentido más amplio de saber y saber hacer los profesores de Ciencias para poder impartir una docencia de calidad?

Convien realizar un esfuerzo para no referirse únicamente a lo más obvio y recoger todo lo que parezca fundamental, aunque sin descender a detalles pormenorizados que podrían hacernos perder una perspectiva global.

Sobre la importancia de una reflexión como la que plantea la cuestión anterior, baste señalar que en 1987 la National Association for Research in Science Teaching (Washington D.C.) organizó un simposio para estabilizar a la luz de la investigación educativa, los conocimientos y destrezas que necesitan poseer los profesores de ciencias (Hewson y Hewson 1988). Y aunque preocupación por el profesorado como uno de los factores esenciales del proceso enseñanza/aprendizaje es antigua (Brincones et al. 1986), hasta recientemente los estudios se centraban en las características del buen profesor, en las «diferencias entre buenos y malos profesores» (Ausubel 1978, cap. 14), mientras que ahora la cuestión se plantea en términos de cuáles son los conocimientos que los profesores necesitamos adquirir. El matiz es importante y supone una superación de concepciones esencialistas («es el profesor...» bien profesor) a inferencias políticas de selección más que procesos de formación. Debemos, por tanto, de hacer esta evolución y plantearnos cuáles son los conocimientos que precisamos adquirir para desarrollar adecuadamente nuestra actividad docente.

¿Cuáles son las respuestas que el profesorado de ciencias da, en general, a la cuestión planteadita? ¿En qué medida dichas respuestas son coherentes con lo que la investigación didáctica viene mostrando? Se trata, pues, de una parte, de conocer hasta qué punto los profesores profesoras somos conscientes de las exigencias de una formación adecuada, pero, sobre todo, pretendemos favorecer la construcción de una concepción global teóricamente fundamentada de lo que supone enseñar ciencias.

1. CONTRA UNA VISIÓN SIMPLISTA DE LA ACTIVIDAD DOCENTE

Digamos de entrada que las respuestas obtenidas plantear la cuestión surjan muy diferentes si pensamos en profesores asistidos, a quienes se ha pasado a cuestionario, o si se propone a grupos de profesores, pa que la aborden colectivamente como punto de partida para un trabajo de formación. En el primer caso, las respuestas son, en general, bastante pobre y no incluyen muchos de los conocimientos que la investigación de tasa como fundamentales. Ello puede interpretarse con el resultado de la escasa familiarización del profesorado con las aportaciones de la investigación e innovación didáctica y, más aún, como expresión de una imagen espontánea de la enseñanza, concebida como algo esencialmente simple, para lo que basta con un buen conocimiento de la materia, algo de práctica y, lo sumado, algunos complementos psicopedagógicos (Furió y C. 1989). Se puede llegar así a la conclusión de que los profesores de ciencias, no sólo carecemos de una formación adecuada, sino que ni siquiera somos conscientes de las insuficiencias...

El resultado es muy diferente, sin embargo, cuando la cuestión es abordada por equipos de profesores en perspectiva de un trabajo de formación. En ese caso, la producción de los grupos recoge, en general, un buen número de los conocimientos que la investigación señalado como necesarios, alejándose así de visión...
OTROS TRABAJOS

figura 1

Qué hemos de saber y saber hacer los profesores de ciencias.

Propuesta basada, por una parte, en la idea de aprendizaje como construcción de conocimientos con las características de una investigación científica y, por otra, en la necesidad de transformar el pensamiento esponjoso del profesor.

1. Conocer la materia a enseñar.
2. Conocer y cuestionar el pensamiento docente esponjoso.
3. Adquirir conocimientos teóricos sobre el aprendizaje y aprendizaje de las ciencias.
5. Saber preparar actividades.
6. Saber dirigir la actividad de los alumnos.
7. Saber evaluar.
8. Utilizar la investigación e innovación.

LISTA DE LA

Las obtenidas al presentar el profesorado al promotor y al profesorado como un conjunto de profesores, para el proyecto de enseñanza, las relaciones que incluyen investigación des- terpretarse como un profesorado innovador de una imagen como algo en que no incluyen conocimientos de la enseñanza de las ciencias. Es importante señalar que esta diferencia no se refiere a la formación de un conjunto de profesores, sino que se refiere a la formación de un conjunto de profesores, con la que se relaciona con las aportaciones a la enseñanza de las ciencias, realizada a lo largo de estas dos últimas décadas.

Nos referiremos, a continuación, a las principales aportaciones de los profesores a la enseñanza de las ciencias. Estas aportaciones pueden agruparse, en general, en ocho capítulos que recoge la figura 1, elaborada por nosotros a partir de un análisis de la investigación, sobre didáctica de las ciencias, realizada a lo largo de estas dos últimas décadas.

Conviene destacar esta coherencia básica de las propuestas de los equipos de profesores con las que se derivan de la investigación. El debate sobre estas distintas aportaciones permite, por otra parte, salir al paso de visiones conductistas que contemplan cada «saber» o «saber hacer» como algo que puede adquirirse sin un entrenamiento específico proporcionado desde fuera, e insistir en el papel central que el proceso de adquisición de los conocimientos tiene, en definitiva, en toda la actividad docente, en el que el docente ha de jugar la actividad innovadora e investigadora del profesorado (Gimeno 1990) tal como intenta reflejar la ya mencionada figura 1.

Tiene particular importancia en este debate clarificar la cuestión a que nos hemos de enfrentar, al que se puede hablar de que el profesorado ha de adquirir un conjunto de saberes que son necesarios para el desarrollo de la actividad docente, y que se reflejan en la figura 1. Podemos decir que, al entender el profesorado como un conjunto de profesores, se reflejan en la figura 1.

ENSEÑANZA DE LAS CIENCIAS, 1991, 9 (1)

NCIAS, 1991, 9 (1)
OTROS TRABAJOS

plantearnos qué hacer en las clases, es decir, a la hora de clarificar la orientación de nuestro trabajo didáctico. Trataremos a continuación con algún detenimiento los dos primeros bloques de conocimientos: el relativo a «conocer la materia a enseñar» y el que se refiere a «conocer y cuestionar el pensamiento docente espontáneo», que están mereciendo hoy una atención particular de la investigación didáctica (Tobin y Espinet 1989).

2. CONOCER LA MATERIA A ENSEÑAR

Si hay algo en lo que se muestra un consenso absolutamente general entre el profesorado, es, sin duda, en la importancia concedida a un buen conocimiento de la materia a enseñar. Ello podría parecer obvio, hasta el punto de hacer innecesario el tratamiento de dicha cuestión en un planteadamiento de la Didáctica de las Ciencias. Pero no es así, el que intentamos en este trabajo, necesariamente breve. De hecho, la tónica general de las actividades de formación permanente en nuestro país es dejar de lado lo que se refiere a contenidos científicos, admitiendo así implícitamente que es suficiente la preparación proporcionada en este aspecto por la formación inicial. Sin embargo, resulta cada vez más evidente que, no sólo esa preparación es a menudo insuficiente, sino que —como han mostrado Tobin y Espinet (1989) a partir de un trabajo de tutoría y asesoramiento a profesores de cien-

cias— una falta de conocimientos científicos constituye la principal dificultad para que los profesores afectados se impliquen en actividades innovadoras. Es preciso, además, llamar la atención sobre el hecho de que algo tan aparentemente claro y homogéneo como «conocer el contenido de la asignatura» implica conocimientos profesionales muy diversos (Bromme 1988 y Coll 1987). Consideramos, pues, conveniente realizar la siguiente actividad:

Diversos estudios han mostrado la importancia decisiva de un conocimiento profundo de la materia a enseñar (hasta el punto de que su ausencia constituye, quizás, el obstáculo fundamental para la innovación). Conviene pues, clarificar mínimamente cuáles entendemos que han de ser los conocimientos de la materia que como docentes precisamos.

Las aportaciones hechas en respuesta a esta cuestión por distintos grupos de trabajo (Cuadro 1) suelen coincidir básicamente en que un buen conocimiento de la materia supone, para los profesores de ciencias:

Conocer la historia de las ciencias, es decir, conocer los problemas que originaron la construcción de los conocimientos científicos (Otero 1985 y 1989), cómo llegaron a articularse en cuerpos coherentes, cómo evolucionaron, cuáles fueron las dificultades (Salías y Viñolo 1985, Matthews 1990)…

*Conocer las orientaciones metodológicas empleadas en la construcción de los conocimientos, es decir, la forma en que los científicos abordan los problemas, las características más notables de su actividad (Gil 1983 y 1986, Hodson 1985, Millar y Driver 1987).

Conocer las interacciones Ciencia/Técnica/Sociedad asociadas a dicha construcción, sin ignorar el carácter a menudo dramático del papel social de las ciencias, la necesidad de la toma de decisiones… (Alkenhead 1985, Solbes y Vilches 1989, Jiménez y Otero 1990).

Tener algún conocimiento de los desarrollos científicos recientes y sus perspectivas para poder transmitir una visión dinámica, no cerrada, de la ciencia.

Saber seleccionar contenidos adecuados que proporcione una visión actual de la ciencia y sean asequibles a los alumnos y susceptibles de interesarles. (Piaget 1969, Caamaño 1988, Hewson y Hewson 1988).

Como señala Linn (1987), este conocimiento profundo de la materia es central para una enseñanza eficaz y no puede adquirirse, obviamente, en el periodo siempre breve de una formación inicial, y mucho menos con la orientación actual de la misma (McDermott 1990). En definitiva, la atención a un buen dominio de la materia aparece también desde un punto de vista didáctico como algo fundamental. Los mismos alumnos son extraordinariamente sensibles a ese dominio de la materia por el profesorado, considerándola a justo título como un requisito esencial de su propio aprendizaje (Carrascosa et al. 1990).

Cuadro 1

1. Conocer la materia a enseñar

1.1. Un buen conocimiento de la materia. "Obvio?" Por supuesto, pero no está en la obra "recordatorio" en primer lugar para salir el paso de incorrectas atribuciones de los conocimientos a aprender por los alumnos.

Se trata, además, de adquirir un conocimiento significativo y de una cierta profundidad de la materia:

- conocer los problemas que originaron la construcción de dichos conocimientos y cómo llegaron a articularse en cuerpos coherentes;
- conocer la metodología empleada;
- conocer las interacciones ciencia/técnica/sociedad asociadas a dicha construcción;
- tener algún conocimiento de los desarrollos recientes y sus perspectivas para poder transmitir una visión dinámica, no cerrada;
- tener conocimientos de otras materias relacionadas con para poder abordar los "problemas-frontera", las interacciones entre campos distantes y los procesos de unificación,…

1.2. Saber seleccionar contenidos adecuados que den una visión correcta de la ciencia y sean asequibles a los alumnos y susceptibles de interesarles.

72

ENSEÑANZA DE LAS CIENCIAS, 1991, 9 (1)
CUESTIONAR LAS IDEAS DE SENTIDO COMÚN SOBRE LA ENSEÑANZA Y EL PRENDIZAJE DE LAS CIENCIAS

Las aportaciones que los grupos de profesoras y profesores suelen hacer en respuesta a esta cuestión anterior son numerosas y, una vez más, se corresponden con problemas clave de la enseñanza/aprendizaje de las ciencias ampliamente recogidos en la literatura especializada. En el cuadro 2 hemos intentado recoger algunos ejemplos de aspectos a cuestionar en el pensamiento y comportamiento docente espontáneo del profesorado de ciencias. La relevancia de los mismos viene respaldada por la amplia literatura existente en torno a dichos problemas, como intentaremos mostrar a continuación con una breve selección bibliográfica sobre las ideas, comportamientos y actitudes docentes de sentido común.

2. Conocer y cuestionar el "pensamiento docente de sentido común".

2.1. Cuestionar la existencia de un pensamiento espontáneo de lo que es enseñar: Ciencias. Fruto de impresiones erróneas que hacen dificil su transformación y análisis crítico. (Véase en la introducción.

2.2. Cuestionar la eliminación del aprendizaje de las ciencias de los conocimientos espontáneos, los aspectos básicos, sociales... A este propósito es esencial cuestionar la "obligación de cobrar el programa" en general (en lo que se puede juzgar con la "falta de material" y, por lo tanto, como una forma de poder profundizar plenamente en los temas o prestar suficiente atención a cuestiones como el trabajo práctico, las relaciones docentes, etc.

2.3. Cuestionar el carácter "naturaleza" del trabajo generalizado de los alumnos y la transmisión de aspectos positivos. Cuestionar, en particular, el determinismo biológico (los alumnos "lazos" y "corazones") y el sociológico (no se puede hacer nada con alumnos "nutrificados" por métodos cuestionables de enseñanza). Ser consciente de que se debe ser un artífice de la enseñanza hacia los alumnos y de que se debe a la "capacidad" para hacer enseñar. Es preciso a este respecto cuestionar la supuesta eficacia de las evaluaciones, así como la idea de que puede asumir que está verificando los resultados de las evaluaciones, así como la idea de que puede asumir que está verificando la eficacia de los métodos de enseñanza, etc.

2.4. Ser consciente del miedo a las actitudes negativas hacia la ciencia y su aprendizaje y conocer que esa actitud es muy relacionada con el tipo de enseñanza, actitud y expectativas del profesor hacia los alumnos, etc.

2.5. Cuestionar el miedo generalizado de frustración asociado a la actividad docente y, en general, los problemas, saber apreciar las satisfacciones personales que esta actividad proporciona como tarea abierta y creadora. Cuestionar igualmente el miedo inherente a una enseñanza "clara y definida": la "simplificación del mundo".

2.6. Cuestionar la idea de que existiría un miedo a la personalidad, del modo como se cuestiona lo que se ha hecho y se puede avanzar en las formas genéricas de "profesor de ciencias". (Véase en la introducción.

2.7. Cuestionar la idea de que existiria un miedo a la personalidad, del modo como se cuestiona lo que se ha hecho y se puede avanzar en las formas genéricas de "profesor de ciencias". (Véase en la introducción.

4. LA FORMACIÓN DEL PROFESORADO LA ACTIVIDAD DOCENTE COMO CAMBIO DIDÁCTICO

Podemos ahora sintetizar el trabajo realizado hasta aquí por una parte hemos visto cómo las profesoras y profesores de ciencias tenemos toda una serie de ideas, conceptos y actitudes en torno a los problemas de enseñanza/aprendizaje que pueden constituir obstáculos para una actividad docente innovadora, en la medida en que se trata de concepciones espontáneas y distintas que se reflejan en las concepciones del profesorado y del aprendizaje de los alumnos. Pero hemos visto también ejemplos de cómo una reflexión y desarrollo de estas concepciones pueden conducir al profesorado a nuevas formas de enseñanza y aprendizaje.

Nuestra hipótesis básica es que con la ayuda de las diferentes herramientas que ofrecen los diferentes estudios, es posible que el profesorado se vea obligado a reflexionar sobre sus prácticas y a reconsiderarlas. El objetivo es que el profesorado se centre en el desarrollo de nuevas concepciones de la enseñanza y el aprendizaje, y que estas nuevas concepciones se reflejen en su práctica diaria.

El hilo conductor para un trabajo de renovación docente ha de ser, en nuestra opinión, la problemática que genera la práctica y las respectivas concepciones en el campo de la didáctica. La problemática se refiere a la forma en que la práctica docente se desarrolla y cómo se relaciona con el aprendizaje de los alumnos. El objetivo es que el profesorado se centre en el desarrollo de nuevas concepciones de la enseñanza y el aprendizaje, y que estas nuevas concepciones se reflejen en su práctica diaria.
Cuadro 3

Adquirir conocimientos teóricos sobre el aprendizaje de las Ciencias

3.1. Adquirir conocimientos de psicología y sociología del adolescente que permitan comprender y favorecer su aprendizaje.

3.2. Saber que el alumno aprende significativamente construyendo conocimientos, investigando.

3.3. Saber que el alumno aprende significativamente construyendo conocimientos, investigando.

3.4. Conocer la existencia de percepciones (y su origen) difíciles de reemplazar si no es mediante un cambio conceptual y metodológico que apoye el aprendizaje a partir de las características del trabajo científico.

3.5. Saber que el conocimiento es una respuesta a una cuestión, lo que implica planificar el aprendizaje a partir de situaciones problemáticas.

3.6. Saber que los conocimientos son respondidos a cuestiones, lo que implica planificar el aprendizaje a partir de situaciones problemáticas.

Cuadro 4

4. Critica fundamento de la enseñanza habitual.

4.1. Conocer las limitaciones de las formas curriculares enciclopédicas (y el mismo tiempo reduccionistas; ver 2.3). Conocer y tener muy en cuenta que la construcción de conocimientos precisan tiempo.

4.2. Conocer las limitaciones de la forma habitual de introducir conocimientos, (tratamientos para el aprendizaje, etc.) y saber romper con dicha orientación.

4.3. Conocer las limitaciones de los trabajos prácticos habitualmente propuestos: versión deformada del trabajo científico.

4.4. Conocer las limitaciones de los trabajos prácticos habitualmente propuestos: simples ejercicios repetitivos.

4.5. Conocer las limitaciones de las formas de organización escolar habituales.

Cuadro 5

5. Saber preparar programas de actividades:

5.1. Saber transformar los contenidos en programas de actividades (instituciones problemáticas) estimulantes a través de las cuales los alumnos puedan recorrer los conocimientos, adquirir destrezas y actividades científicas para transformar su visión del mundo.

actividades de iniciación

5.2. Saber planificar actividades que propicien una concepción e interés por la lenta.

5.3. Tener en cuenta las ideas, vidas del mundo, destrezas y actividades que los alumnos ya poseen.

5.4. Tener en cuenta los pre-requisitos para el estudio a realizar, no olvidar los saberes en la necesidad y enseñanza. (Tenemos las líneas de los saberes).

actividades de desarrollo

5.5. Planificar situaciones problemáticas para el estudio para el ocio para que los alumnos continúen a reflexionar sus ideas.

5.6. Proporcionar la formulación de problemas que sean de las situaciones problemáticas y su tratamiento científico, con introducción de conceptos, enlazados a hipótesis, ocasion para que las ideas previas sean utilizadas para hacer predicciones, etc.

5.7. Planificar la elaboración de estrategias de experimentalización y diseñar experiencias para la construcción de la hipótesis.

5.8. Proporcionar la resolución y el análisis de los resultados obtenidos por los alumnos y por otros exámenes, así como la detección de conflictos e interacción y hacer posible la sustancia de las concepciones científicas.

5.9. Enlazar el manejo intelectual de los nuevos conocimientos en una variedad de situaciones para hacer posible la gestión del conocimiento y el aprendizaje de los contenidos.

5.10. Desarrollar el manejo de los nuevos conocimientos en una variedad de situaciones para hacer posible el manejo del conocimiento y el aprendizaje de los contenidos.

5.11. Planificar el manejo intelectual de los nuevos conocimientos en una variedad de situaciones para hacer posible la gestión del conocimiento y el aprendizaje de los contenidos.

actividades de acabado

5.12. Planificar actividades adecuadas de acabado sistemático, orgánico, mapas conceptuales, elaboración de productos, planificación de nuevos problemas...
Cuadro 6

6. Saber dirigir las actividades de los alumnos

6.1. Permanecer en las aulas durante el desarrollo de las actividades, asistiendo a los alumnos en el desarrollo de la tarea.

6.2. Saber dirigir activamente las actividades de aprendizaje. Facilitar, en particular, el funcionamiento de los pequeños grupos y las interacciones intergrupales, dirigiendo adecuadamente las pruebas y actividades de las actividades que plantean la clase.

6.3. Facilitar oportunamente la información necesaria para que los alumnos realicen las tareas de su trabajo, abriendo nuevas perspectivas, etc.

6.4. Realizar sistemas de retroalimentación que pongan en valor las aportaciones de los alumnos y orienten dinámicamente el desarrollo de la tarea.

6.5. Saber actuar, en última instancia, como experto capaz de dirigir el trabajo de varios equipos de 'investigadores sociales' y de transmitir su propio saber por la materia y por el desarrollo intelectual de los alumnos.

6.6. Crear un buen clima de funcionamiento de la clase, señalando que una buena "disciplina" es el resultado de un trabajo interesante y de buenas relaciones entre profesor y alumnos marcado por la creatividad y la autonomía.

6.7. Constituir un nuevo equilibrio entre los estándares de enseñanza que favorezcan interacciones frecuentes entre el alumnado, el centro y el medio ambiente.

Cuadro 7

7. Saber evaluar

7.1. Conocer y utilizar la evaluación como instrumento de aprendizaje que permite investigar retroalimentación adecuada.

7.2. Ampliar el concepto y la práctica de la evaluación a otros aspectos de saber, destrezas y actitudes que intervienen en el desarrollo de las ciencias, superando la habitual limitación a las "conocimientos técnicos".

7.3. Introducir formas de evaluación de su trabajo donde los alumnos y otros profesores como instrumentos de sondeo de la propia enseñanza.

REFERENCIAS BIBLIOGRÁFICAS

CARRASCOSA, J., FERNÁNDEZ, J., GIL, D. y OROZCO, A., 1990. La visión de los alumnos sobre lo que el profesorado de ciencias ha de saber y saber hacer. Investigación en la Escuela (pendiente de publicación).

GIMENO, J., 1982. La pedagogía por objetivos: obsesión por la eficiencia. (Morata: Madrid).

